
77

■ ■ ■

C H A P T E R 3

Displaying Data on a Page

The previous two chapters covered the fundamentals required to start using databases.

Chapter 1 showed the various types of data sources available. Chapter 2 then moved on to

talk about relational databases, and by the end of the chapter, you had fundamentally the

same database in three different flavors: SQL Server 2005, MySQL 5.0, and Microsoft Access.

We’ve covered an awful lot of theory so far. Now, you’ll see how to put some of this into

practice. In this chapter, you’ll look at how to display read-only data on a page using the new

(to ASP.NET 2.0) SqlDataSource and GridView.

Now, the phrase read-only may sound limiting to you, but Web sites send you a lot more

read-only data than data you can alter. Consider search engine results, product details on an

e-commerce Web site, news reports from the innumerable feeds on the Web, auction pages,

and so on. They’re all read-only, unless you have the administrative privileges to change them.

Regardless, you may be itching to get straight onto editable data, and you’ll look at how to

handle that in Chapters 8 and 9.

For the less impetuous, you’ll see that working with read-only data isn’t a yoke to bear, but

on the other hand, it isn’t a bag of feathers. You have less to do when you don’t have to accom-

modate creating, updating, and deleting data, but you still have plenty of ways to make mistakes.

We’ll spend most of the chapter looking at how to interact with SQL Server 2005. However,

there are a few wrinkles when you want to use MySQL 5.0 or Microsoft Access. At the end of the

chapter, we’ll look at those differences and how they affect the pages you build.

This chapter covers the following topics:

• The data source Web controls that have been added in ASP.NET 2.0, focusing on how the

SqlDataSource simplifies the process of connecting to a data source

• How to use SELECT queries to return the results you require, starting with basic SELECT

queries and then expanding to those that order results and work across multiple tables

in the database

• How to combine a SqlDataSource with a DropDownList to filter the results using a WHERE

clause and display them in a GridView

• How to modify the WHERE clause to support both filtered and nonfiltered results returned

from the same query

78 C H A P T E R 3 ■ D I S P L A Y I N G D A T A O N A P AG E

Introducing the Data Source Web Controls
When dealing with databases prior to ASP.NET 2.0, you had to write quite a lot of code, even for

the simplest of pages. You needed to create a connection to the database using a Connection

object, create a query to execute against the connection using a Command object, and then

decide whether you wanted to retrieve the data using a DataAdapter object (into a DataSet

object) or via a DataReader object.

Compare this to how you retrieved the data in the very brief example in Chapter 1 using a

SqlDataSource object. You didn’t write any code, but instead used a wizard to create the correct

object. The SqlDataSource is perfect when data-binding the results to a GridView or similar Web

control.

This drag-and-drop approach is a far simpler way of retrieving data than writing code to

access the database. However, it isn’t suitable for every situation, and you probably won’t be

able to build an entire Web site that doesn’t contain code to access the database. We’ll look at

writing code to access the database in Chapter 4.

ASP.NET 2.0 introduces five Web controls that retrieve data from a particular data source.

These Web controls can be broadly categorized into two categories, depending on the type of

data that they’re retrieving:

• Set-based: Set-based data is the type of data that you’ve seen in the two previous chap-

ters—data that is organized into columns and rows. ASP.NET 2.0 provides three set-

based data source Web controls:

• AccessDataSource: This control works exclusively with Access databases. It’s limited

to retrieving data from the database and won’t allow data to be written back to the

database. If you need to do more than retrieve data from the database, you need to use

the SqlDataSource.

• ObjectDataSource: This control provides an abstraction layer between an object and a

data-bound Web control such as the GridView. Commonly used with a multitiered

architecture, the control enables you to use data-bound Web controls while still

retaining that architecture.

• SqlDataSource: This control acts as the bridge between the data-bound Web controls

and a database. Although the name SqlDataSource sounds as though it will work with

only SQL Server databases, it actually works with any data provider (and therefore

with any ODBC- or OLE DB-compliant data source).

• Hierarchical: Hierarchical data sources are used to retrieve data that is, well, hierar-

chical—data that isn’t in column-and-row form. ASP.NET 2.0 provides two Web

controls that work with hierarchical data:

• SiteMapDataSource: ASP.NET 2.0 introduces a complete new set of features that

make building navigational functions into a Web site extraordinarily easy. For more

information about site maps, see http://msdn.microsoft.com/en-us/library/

k36h0dfh.aspx.

• XmlDataSource: This control is designed to work with XML data. For more informa-

tion about the XmlDataSource, see http://msdn.microsoft.com/en-us/library/

51ew3eby.aspx.

C H A P T E R 3 ■ D I S P L A Y I N G D A T A O N A P A G E 79

As you can see, ASP.NET 2.0 provides five different data source Web controls that you can

use in different circumstances, depending on the data that you need to view. By far, the one

that you’ll use most often is the SqlDataSource, as this allows you to connect to any data source

that can be accessed using a data provider, including databases with an ODBC driver or OLE

DB provider. As you’ll see when you look at using the GridView to modify data in Chapter 9, the

SqlDataSource can also modify the data within the database.

Introducing SELECT Queries
To return data from a database, you use a SELECT query. The basic format of the SELECT query is

as follows:

SELECT <select column list>

FROM <table list>

[WHERE <constraints>]

[ORDER BY <order column list>]

A SELECT query has four parts; two of them are required, and two are optional. A SELECT

query must always have a select column list and a table list, but the WHERE and ORDER BY

clauses are optional (indicated by the square brackets in the definition). These optional clauses

allow you to filter and sort the data you’re retrieving.

■Note I’m not trying to teach you every little nuance of SQL here; I’m showing only a small subset of what’s

possible. Appendix C contains more details of the various SQL commands. For a complete reference, refer to

The Programmer’s Guide to SQL by Christian Darie and Karli Watson (1-59059-218-2; Apress, 2003).

The SELECT query can get confusing quickly, so we’ll start with a simple example of querying

a single table. Then we’ll expand on the example, demonstrating how to sort the results, select

data from more than one table, and filter the results returned from the database.

■Note In the examples in this chapter, you’ll use the SQL Server 2005 database. Using MySQL 5.0 or Microsoft

Access is very similar. For details about the differences, see the “Connecting to MySQL 5.0 and Microsoft Access”

section later in this chapter.

Try It Out: Querying a Single Table

The easiest form of SELECT query you can make against the database is to query for values from

a single table. In this case, you’ll list all the Players in the database. This example is the basis for

the rest of the examples in this chapter.

80 C H A P T E R 3 ■ D I S P L A Y I N G D A T A O N A P AG E

Follow these steps:

1. Start Visual Web Developer and create a new Web site called Chapter03 in the C:\BAND\

folder.

2. Delete the Default.aspx file and create a new Web Form by selecting Add New Item

from the Web site’s context menu in the Solution Explorer.

3. Enter Select.aspx as the name for the Web Form. Make sure that the language is Visual

C# and that the Place Code in a Separate File option is unchecked. Click Add to create

the Web Form.

4. Right-click Select.aspx in the Solution Explorer and select Set As Start Page.

5. In the Source view, change the name of the page to SELECT by changing the <title> tag

as follows:

<title>SELECT</title>

6. Switch to the Design view by clicking the Design tab at the bottom of the window.

7. Expand the Data entry in the Toolbox on the left side of the screen (if the Toolbox is not

visible, select View ➤ Toolbox) and add a SqlDataSource onto the page.

8. From the SqlDataSource Tasks menu, shown in Figure 3-1, select the Configure Data

Source option. (If the Tasks menu isn’t shown, click the right-facing arrow at the top

right of the SqlDataSource to open the menu.)

Figure 3-1. The SqlDataSource Tasks menu

9. You’ll see that the connections to the databases you created in Chapter 2 are available

in the Data Connections drop-down list. However, you want to use the reduced privilege

account, rather than the administrator account, so you need to create a new con-

nection. Click the New Connection button.

10. In the Add Connection dialog box, enter the server name as localhost\BAND and select

SQL Server Authentication as the authentication method. Enter a username of band

and a password of letmein. Check the Save My Password option. Also select the Players

database from the Select or Enter a Database Name drop-down list. Your dialog box

should look like Figure 3-2. Click OK to create the new connection.

C H A P T E R 3 ■ D I S P L A Y I N G D A T A O N A P A G E 81

Figure 3-2. Creating a new connection in Visual Web Developer

11. In the Configure Data Source wizard, the drop-down list will have been prepopulated

with a new entry for the reduced privilege account. The entry will have a name that

ends with band.BAND.dbo1; in this case, keegan\band.BAND.dbo1. As shown in Figure 3-3,

you can expand the Connection String entry to show the actual connection string being

used. Click Next to continue.

12. On the Save the Connection String step, make sure the Yes, Save This Connection option is

selected, and enter a name for the connection of SqlConnnectionString. Then click Next.

13. The next step of the wizard allows you to create the SELECT query that the SqlDataSource

will use. Select the Player table in the Name drop-down list, and check the PlayerName

and PlayerManufacturerID columns, as shown in Figure 3-4. Click Next.

82 C H A P T E R 3 ■ D I S P L A Y I N G D A T A O N A P AG E

Figure 3-3. Selecting the correct connection and verifying the connection string

Figure 3-4. Creating the SELECT query

C H A P T E R 3 ■ D I S P L A Y I N G D A T A O N A P A G E 83

14. On the Test Query step, you can click the Test Query button to test that the query is

correct. Once you’re happy that it is (if it isn’t, click Previous to go back to the previous

step and modify the query), click Finish to close the wizard.

15. Switch back to the Design view of the page. Add a GridView from the Data section of the

Toolbox to the page, below the SqlDataSource.

16. From the GridView Tasks menu, select Auto Format, and then select Colorful from the

list. (If you don’t like Colorful, you can pick another format, although the pages you

build won’t look exactly like the illustrations in this chapter.) Click OK.

17. From the Choose Data Source drop-down list, select SqlDataSource1, as shown in

Figure 3-5.

Figure 3-5. Selecting the correct DataSource from the GridView Tasks menu

18. As shown in Figure 3-6, the GridView will change to show the columns from the SELECT

query that you defined for the SqlDataSource earlier.

Figure 3-6. At design time, the GridView shows correct column information.

84 C H A P T E R 3 ■ D I S P L A Y I N G D A T A O N A P AG E

19. Run the page in debug mode by clicking the Start Debugging button in the toolbar,

selecting Debug ➤ Start Debugging, or pressing F5. All three methods will start the

debugging process. Debugging isn’t enabled by default for Web sites, so the Debugging

Not Enabled dialog box will appear, as shown in Figure 3-7. Accept the Modify option by

clicking OK.

Figure 3-7. Enabling debugging for the Web site

20. Visual Web Developer’s built-in Web server will start (which you’ll see in the system

tray), and the page will be displayed in your browser, as shown in Figure 3-8.

Figure 3-8. Results of running a SELECT query against the Player table

C H A P T E R 3 ■ D I S P L A Y I N G D A T A O N A P A G E 85

How It Works

In this example, you built a relatively simple page, showing the name of all of the Players in the

database alongside details of their Manufacturer. (Granted, the PlayerManufacturerID data

isn’t particularly helpful, and you’ll see how to improve this in the “Try It Out: Querying Multiple

Tables” section later in this chapter.)

As you saw in step 19, Visual Web Developer needs to modify the Web.config file to enable

debugging. By clicking OK in the Debugging Not Enabled dialog box (Figure 3-7), you’ve told

Visual Web Developer to add the code shown in bold to the Web.config file:

<configuration>

 <system.web>

 <compilation debug="true"/>

 </system.web>

</configuration>

This tells ASP.NET that the Web site is running in debug mode and to allow a debugger to

attach to the Web site.

Visual Web Developer has also made a further change to Web.config. In step 12, you told

it to save the connection string, and it has done just that, placing the connection string in

the <connectionStrings> element. In previous versions of ASP.NET, all user settings—database

connection strings, file paths, and so on—were usually stored in Web.config in the <appSettings>

element. ASP.NET 2.0 introduces the new <connectionStrings> element, which is used exclu-

sively to store database connection strings:

<configuration>

 <connectionStrings>

 <add name="SqlConnectionString"

 connectionString="Data Source=localhost\BAND;Initial Catalog=Players;

 Persist Security Info=True;User ID=band;Password=letmein"

 providerName="System.Data.SqlClient"/>

 </connectionStrings>

</configuration>

Entries are added to <connectionStrings> in much the same way as they were added to

<appSettings> by using an <add> element. But unlike <appSettings>, where you could supply

only a key and a value, you add connection-specific information, as follows:

• connectionString: The string that is used to make the connection to the database. The

actual value depends on the provider that you’re going to use (as determined by the

providerName attribute).

• name: Define is the name that is used to refer to this particular connection string.

• providerName: Tells ASP.NET which data provider this connection uses. It can be one of

the following values: System.Data.Odbc, System.Data.OleDb, System.Data.OracleClient,

or System.Data.SqlClient.

In this example, you specified SqlConnectionString as the name of the connection string,

and this is used as the value of the name attribute. The remaining two attributes were completed

by Visual Web Developer using the information that you supplied.

86 C H A P T E R 3 ■ D I S P L A Y I N G D A T A O N A P AG E

You’re connecting to a SQL Server database, so System.Data.SqlClient is used, and the

connectionString attribute, which is the connection string itself, is built from the details that

you entered in the Add Connection dialog box, as follows:

 connectionString="Data Source=localhost\BAND;Initial Catalog=Players;

 Persist Security Info=True;User ID=band;Password=letmein"

The properties are as follows:

• Data Source: This is the server to which you’re connecting. This can either be a server

name or an IP address, as well as the specific instance that you require. For example,

localhost\BAND is the BAND instance of SQL Server on the local machine.

• Initial Catalog: The database on the server to which you want to connect; Players in

this example.

• Persist Security Info: When set to True, this property allows the username and password

that are used to connect to the database to be viewed when programmatically looking at

the connection string. Ideally, it should always be set to its default value of False but it is

set to True by Visual Web Developer when you’re using an existing connection that has

its password stored. You can remove this property from the connectionString without

causing any problems.

• User ID: The username to use when connecting to the database; band in this example.

• Password: The password to use when connecting to the database; letmein in this example.

■Note You have a multitude of options for connecting to data sources. For a comprehensive list, see

http://www.connectionstrings.com.

Now that we’ve covered the various “background” parts of the sample page, it’s time to

look at the two Web controls that you used to do all the work: the SqlDataSource for connecting

to the database and retrieving the results and the GridView for displaying those results.

The SqlDataSource Web Control

The SqlDataSource is the brains of the operation. It handles connecting to the database and

executing the query against the database to return the results you requested. Here is the

markup produced for it:

<asp:SqlDataSource ID="SqlDataSource1" runat="server"

 ConnectionString="<%$ ConnectionStrings:SqlConnectionString %>"

 SelectCommand="SELECT [PlayerName], [PlayerManufacturerID] FROM [Player]">

</asp:SqlDataSource>

C H A P T E R 3 ■ D I S P L A Y I N G D A T A O N A P A G E 87

In its simplest form, there isn’t a lot to it. As well as the obligatory ID and runat properties,

it has only two other properties: ConnectionString and SelectCommand.

The ConnectionString property is used to specify the data source that you want to use. In

this instance, the value indicates that you want to use a connection string,

SqlConnectionString, which is stored in the Web.config file:

<%$ ConnectionStrings:SqlConnectionString %>

As you saw earlier, Visual Web Developer created an entry in the <connectionStrings>

section of Web.config that provided the full details of the connection to the database. By specifying

the ConnectionString in this way, you’re telling the SqlDataSource that you want to use it.

STORING CONNECTION STRINGS

You’ve stored all of your connection strings within Web.config, as this allows the most flexibility when building

Web sites. You have one connection string that you need to change should the database details change.

You should always store your connection strings in Web.config, as this makes for far easier mainte-

nance of the Web site. If the database details change, you can easily modify the connection string in

Web.config. However, you can also store the connection string directly within the page, as follows:

<asp:SqlDataSource ID="SqlDataSource1" runat="server"

 ConnectionString="Data Source=localhost\BAND;Initial Catalog=BAND;

 Persist Security Info=True;User ID=band;Password=letmein"

 ProviderName="System.Data.SqlClient"

 SelectCommand="SELECT [PlayerName], [PlayerManufacturerID] FROM [Player]">

</asp:SqlDataSource>

You need to provide enough information to fully configure the connection, so you must also specify a

ProviderName to tell the SqlDataSource which provider to use.

The property of most interest here is SelectCommand. This contains the SELECT query that

will be run against the database when data is requested.

The SELECT query you use to select all of the Players is about as simple as it can get. You

specify the columns you want to retrieve and the table you want to retrieve them from, like so:

SELECT [PlayerName], [PlayerManufacturerID]

FROM [Player]

Okay, it could have been simpler—you could have returned only one column, but returning

two is just a little more complex. The columns to retrieve are specified as a comma-separated

list (in this case, PlayerName and PlayerManufacturerID) after the SELECT query, and the table

from which you want the data to be returned is specified after the FROM statement.

88 C H A P T E R 3 ■ D I S P L A Y I N G D A T A O N A P AG E

■Note Instead of listing the columns you want to retrieve with the query, you can use SELECT * to return

all the columns from the query. However, it’s better to explicitly list the columns to return, rather than relying

on returning all the columns. Not only is it quicker (the database doesn’t have to retrieve a list of columns to

return before it executes the query) and produces less network traffic (you’re not returning columns you don’t

need), but it also makes the code more readable, because anyone can see what the query is returning without

having to look at the database structure.

Notice that the column names have square brackets around them, so the PlayerName column

is retrieved as [PlayerName]. Although not required in this instance, the square brackets are

used by SQL Server to delimit the name of the column. Column names can contain spaces, so

the square brackets set off the entire name. For example, a column called Player Name not

surrounded by brackets would cause an error, as the database would look for a column called

Player. You should avoid using spaces in names within the database—whether for tables, columns,

or any other database object—at all costs. It’s quite easy to forget that you need to have square

brackets around the names, which can lead to all kinds of problems with the queries that you’re

trying to execute. As you've been good and designed your database without any table or column

names without any spaces, we will not need to use square brackets at all. From now on, we will

not show any SQL queries with square brackets. Just be aware that Visual Web Developer may

add them to the queries that it creates.

■Note Although you can refer to the columns using only the name of the column, such as PlayerID, the

correct name of the column—its full name syntax—is Player.PlayerID. The database allows you to use

this shorthand version because there’s no confusion as to which table the column belongs. There’s no restriction on

the names of columns, and when you join tables, it’s likely that columns with the same name will appear in

multiple tables. The only way you can distinguish which column you’re after is to use the full name syntax for

specifying the column name.

The GridView Web Control

The GridView is a new control introduced in ASP.NET 2.0 that replaces the DataGrid from previous

versions of ASP.NET. As you’ve seen, it’s used to display data from a data source in a tabular

format. But it can do a whole lot more than that, including automatic sorting and paging of results.

We’ll take a much more detailed look at this control starting in Chapter 7. For now, we’ll focus

on the way that you’re using the GridView in this example.

Looking at the markup generated for the GridView, you can start to appreciate how it works

(this snippet has formatting instructions removed for simplicity):

<asp:GridView ID="GridView1" runat="server"

 AutoGenerateColumns="False" DataSourceID="SqlDataSource1">

 <Columns>

 <asp:BoundField DataField="PlayerName"

 HeaderText="PlayerName"

 SortExpression="PlayerName" />

 <asp:BoundField DataField="PlayerManufacturerID"

 HeaderText="PlayerManufacturerID"

C H A P T E R 3 ■ D I S P L A Y I N G D A T A O N A P A G E 89

 SortExpression="PlayerManufacturerID" />

 </Columns>

</asp:GridView>

The DataSourceID property of the GridView tag specifies the name of the data source being

used; in this case, you’re using SqlDataSource1, which is the SqlDataSource described in the

previous section.

If the AutoGenerateColumns property is set to True, then the DataSourceID is the only property

that you need to set on a GridView for it to display the data from the data source Web control.

The columns that it displays will be generated automatically from the results returned from the

data source, and every column in the results will be displayed. However, you may not want this

automatic generation—you may want to display just a subset of that data. In this case, you

would set the AutoGenerateColumns property to False, and then manually define the columns

you want to display using the <Columns> collection. In the example, Visual Web Developer has

created a Columns collection for you, because you selected the PlayerName and PlayerManu-

facturerID columns (in step 13).

The <Columns> collection contains the columns, or fields in GridView terminology, that will be

displayed. Although you defined only one column type in this example, BoundField, a total of seven

types are available. Table 3-1 gives you an idea of what is possible using the GridView. We’ll come

back to this list starting in Chapter 7. For now, we’re interested only in the BoundField.

A BoundField has only one property that is always required when displaying data: DataField.

This property indicates which column in the data source you want to display. In this example,

you have two columns in the GridView, and the DataField properties are set to PlayerName and

Table 3-1. GridView Column Types

Name Description

BoundField Displays data directly from the data source. The DataField property
indicates which particular column of the results you want to show,
and you can use the optional DataFormatString property to format the
results as required.

ButtonField Shows a button that causes a postback to the server, allowing an action
to be performed on the selected row.

CheckBoxField Shows a check box. This type of column is usually used to display
columns from the database with Boolean values.

CommandField Creates a column in the results that contains Edit, Update, and Cancel
buttons (as appropriate) to allow editing of the data within the
selected row.

HyperLinkField Shows a hyperlink.

ImageField Shows an image.

TemplateField Allows full control over what is displayed for the column: the header, the
item displayed, and the footer. The TemplateField contains various
templates controlling what is displayed and, within these templates, you
can place whatever content you desire. This makes the TemplateField
the most customizable of the column types.

90 C H A P T E R 3 ■ D I S P L A Y I N G D A T A O N A P AG E

PlayerManufacturerID. These are the names of the columns that you want to show from the

data source, and they correspond to the columns that you’re returning from the SELECT query.

Visual Web Developer also adds two further properties for you: HeaderText is the text that

is displayed in the header row of the table, and SortExpression is the value used to control the

sorting applied to this column if sorting is enabled. The default for both of these is the name of

the column that is being displayed, so you’ll see that DataField, HeaderText, and SortExpression

all have the same value. For this example, what is displayed in the header for the column is not

important, and you’re free to change it to whatever you like. Similarly, you’re not concerned

with sorting, so the SortExpression is not relevant at the moment; you’re free to remove it.

We’ll come back to sorting in Chapter 7.

■Note You’ll notice that the GridView on the page that you built has a lot more properties than we’ve

looked at here. You’ll see six xxxStyle elements defined, as well as some style properties applied directly

to the GridView. Feel free to experiment with the elements and properties, as they won’t affect how the

GridView works. You can change them directly from the Source view of the page or from the Styles section of the

Properties window for the Web control. Just remember that if you get to a point where you can’t see anything (blue

text on a blue background, anyone?), you can always select Auto Format from the GridView Tasks menu to

remove any style information that you’ve applied or to change to one of the predefined styles.

Try It Out: Ordering the Results

One of the problems with the results you’ve received in the previous example is that they’re not

ordered. You’ve returned all of the Players in the database in whatever order they were entered.

If you look back at Figure 3-8, you’ll see that trying to find a specific Player will require a lot of

work on the behalf of the user.

What you need to do is order the results, and SQL provides this ability with the ORDER BY

clause of the SELECT query. In this example, you’ll build on the simple SELECT query of the last

example and sort the Players alphabetically. Follow these steps:

1. If you’ve closed Select.aspx from the previous example, reopen it.

2. Switch to the Design view of the page. Open the Tasks menu for SqlDataSource1 and

click the Configure Data Source option.

3. You’ve already configured the data source in the previous example, so click Next to skip

past the Choose Your Data Connection step. On the Configure the Select Statement

step, click the ORDER BY button.

4. In the first drop-down list of the Add ORDER BY Clause dialog box, select the PlayerName

column, as shown in Figure 3-9. Then click OK.

5. Click Next, and then click Finish to close the wizard.

6. Open the page. The results will be the same as the previous example, except that the

Players will be in alphabetical order, as shown in Figure 3-10.

C H A P T E R 3 ■ D I S P L A Y I N G D A T A O N A P A G E 91

Figure 3-9. Specifying ORDER BY clauses for a SELECT query

Figure 3-10. Ordering the results that are returned

92 C H A P T E R 3 ■ D I S P L A Y I N G D A T A O N A P AG E

How It Works

You used the Configure Data Source wizard to modify the query that you’re executing against

that database. You appended an ORDER BY clause to return the results in alphabetical ascending

order. If you look at the Source view of the page, you’ll see that the SelectCommand property of

SqlDataSource1 has been changed like so:

SELECT PlayerName, PlayerManufacturerID

FROM Player

ORDER BY PlayerName

■Tip Although you used the wizard to add the ORDER BY clause, you could have quite easily modified the

SelectCommand property manually and added the clause.

Adding the ORDER BY clause and specifying a text column sorts the results alphabetically on

that column. If you specify a column for the ORDER BY clause, the sort order is, by default, ascending.

The query you’ve used to sort the results is equivalent to specifying a sort order of ASC along

with the column, like so:

SELECT PlayerName, PlayerManufacturerID

FROM Player

ORDER BY PlayerName ASC

You can also sort in descending order using DESC, like so:

SELECT PlayerName, PlayerManufacturerID

FROM Player

ORDER BY PlayerName DESC

Executing this query has the effect of sorting the results by Player name in descending

alphabetical order, as shown in Figure 3-11.

Figure 3-11. Sorting by PlayerName in descending alphabetical order

Although the examples you’ve seen sort on a text column, PlayerName, you can sort on

any type of column. Dates will be sorted earliest to latest if you specify an ascending order, and

latest to earliest if you specify descending. Numbers are sorted smallest to largest or largest to

C H A P T E R 3 ■ D I S P L A Y I N G D A T A O N A P A G E 93

smallest. Each type of column follows its own rules, and the ordering they impose generally

makes sense.

You can see how ordering applies to nontext columns if you order the results by

PlayerManufacturerID, like so:

SELECT PlayerName, PlayerManufacturerID

FROM Player

ORDER BY PlayerManufacturerID

Executing this query returns the results in ascending PlayerManufacturerID order, as

shown in Figure 3-12.

Figure 3-12. Sorting by an integer column, PlayerManufacturerID

You could also return the results in descending PlayerManufacturerID order, and the

entries that have a PlayerManufacturerID of 10 would be at the beginning of the results.

The ORDER BY clause also allows you to sort the results on multiple columns, as you saw

offered in the Add ORDER BY Clause dialog box (Figure 3-9). If you look at the results in

Figure 3-12, you’ll see that, although you’ve sorted by PlayerManufacturerID, the PlayerName

column is unsorted. What you really want is the results sorted by PlayerManufacturerID, and

then by PlayerName. You can accomplish this relatively easily by specifying the two columns

you want to order, separated by commas after the ORDER BY clause, like so:

SELECT PlayerName, PlayerManufacturerID

FROM Player

ORDER BY PlayerManufacturerID, PlayerName

This will order the Players by PlayerManufacturerID and PlayerName. Both of the sorts

will be in ascending order, as you can see from the results returned in Figure 3-13.

Figure 3-13. Sorting on multiple columns

94 C H A P T E R 3 ■ D I S P L A Y I N G D A T A O N A P AG E

It’s also possible to have different sort orders on different columns by specifying the sort

order you want for each column, like so:

SELECT PlayerName, PlayerManufacturerID

FROM Player

ORDER BY PlayerManufacturerID DESC, PlayerName

You want the results by PlayerManufacturerID in descending order and then by PlayerName

in ascending order. As shown in Figure 3-14, this is exactly the order in which the results are

returned.

Figure 3-14. Sorting on multiple columns with different sort orders

Try It Out: Querying Multiple Tables

Looking at the results you received from the previous example (Figure 3-10), you’ll see that

although you return the title of the Player correctly, the Manufacturer is simply an integer.

Recall from Chapter 2 that the PlayerManufacturerID column in the Player table corresponds

to the ManufacturerID column in the Manufacturer table. Unless you’re capable of remembering

vast quantities of data, the integer on its own won’t be a lot of use. You need some way of joining the

Player and Manufacturer tables so that, instead of returning the PlayerManufacturerID, you return

the name of the Manufacturer.

SQL allows you to return data from multiple tables by using the JOIN clause when you

specify from which tables you want to return data. You’ll now see a JOIN in action by building

on the previous example and returning the name of the Manufacturer instead of the ID integer.

Follow these steps:

1. If you’ve closed Select.aspx from the previous example, reopen it.

2. Select SqlDataSource1, and from the Properties window, click the ellipsis for the

SelectQuery property.

3. In the Command and Parameter Editor dialog box, click the Query Builder button. The

Query Builder dialog box isn’t easy to use in its default size, so expand the window until

it’s at a reasonable size, as shown in Figure 3-15.

4. Click the top part of the dialog box next to the Player table and select Add Table from the

context menu.

C H A P T E R 3 ■ D I S P L A Y I N G D A T A O N A P A G E 95

Figure 3-15. The Query Builder dialog box

5. From the Add Table dialog box, select the Manufacturer table, and then click OK. This

adds the Manufacturer table and shows the relationship it has with the Player table, as

shown in Figure 3-16.

Figure 3-16. Relationships are shown in the Query Builder dialog box

6. Uncheck the PlayerManufacturerID check box in the Player table, and check the Man-

ufacturerName check box in the Manufacturer table. This updates both the column list

in the second part of the Query Builder dialog box and the SQL view in the third part.

7. Click OK to close the Query Builder dialog box, and then click OK to close the Command

and Parameter Editor dialog box.

96 C H A P T E R 3 ■ D I S P L A Y I N G D A T A O N A P AG E

8. Open the Tasks menu for GridView1 and select the Refresh Schema option. You’re

presented with a confirmation dialog box, as shown in Figure 3-17.

Figure 3-17. You must confirm that you want to change the schema for a GridView.

9. Click Yes to confirm that you want to refresh the GridView. You’ll see that the GridView

has been updated correctly.

10. Open the page. The new query runs against the database, and the results are returned,

as shown in Figure 3-18.

Figure 3-18. Results of a SELECT query against the Player and Manufacturer table

How It Works

Before we look at what actually changed in the query, it’s worth taking a quick detour into the

interaction of the SqlDataSource and GridView.

C H A P T E R 3 ■ D I S P L A Y I N G D A T A O N A P A G E 97

The first couple of steps of the example were concerned with changing the query that

you are executing. When you closed the Command and Parameter Editor dialog box for

the SelectQuery property, SqlDataSource1 was updated with the new SELECT query—with

PlayerManufacturerID replaced by ManufacturerName—but GridView1 was still looking for

the old column. If you had run the page at this point, you would have seen an error message

instead of any results, as shown in Figure 3-19.

Figure 3-19. A BoundField must show a column from the data source.

If you had been using automatically generated columns, this wouldn’t have been a problem,

as the ManufacturerName would have been returned. However, as you saw in the first example

in this chapter, you’re explicitly saying which columns you want to show, so you would have

gotten an error.

To avoid this error, you refreshed the schema for GridView1 before running the page. When

the schema is refreshed, Visual Web Developer looks at the specified data source and replaces the

<Columns> collection with a new collection for the data source as it stands at that point in time.

Now, let’s look at the changes to the SELECT query that you’re running. The query has been

changed to the following:

SELECT Player.PlayerName, Manufacturer.ManufacturerName

FROM Player INNER JOIN Manufacturer

 ON Player.PlayerManufacturerID = Manufacturer.ManufacturerID

ORDER BY Player.PlayerName

98 C H A P T E R 3 ■ D I S P L A Y I N G D A T A O N A P AG E

First, notice that you’re now using the full name syntax to refer to the columns. Although

the database doesn’t have any column names that could clash, it’s good practice when returning

data from multiple tables to use the full name, even if you don’t have to do so. Not only does it

make it easier to see which table a column comes from, it should also make the query a little

faster, because the database won’t need to work out which table contains the column since

you’ve already specified it.

The following FROM clause, and in particular the INNER JOIN you added, is the important

part of the query:

FROM Player INNER JOIN Manufacturer

 ON Player.PlayerManufacturerID = Manufacturer.ManufacturerID

When joining tables using an INNER JOIN, the database combines both tables into one

“supertable” and returns only records that exist on both sides of the join. It does this by using

the table specified after the FROM clause as the master table and by appending matching records

in the table specified after the INNER JOIN based on the ON criteria.

■Note Using INNER JOIN rather than simply JOIN should give you a clue that this isn’t the only type of

join. SQL also defines RIGHT JOIN, LEFT JOIN, and CROSS JOIN, which allow you to change how the tables

are actually joined. The INNER JOIN is by far the most commonly used type of join.

The ON criterion specifies how the two tables you’re joining are being joined. In this case,

you specify that the PlayerManufacturerID column in the Player table is joined to the Manufac-

turerID column in the Manufacturer table. This tells the database that the two columns are

equal and to combine the tables based on this.

If you could view the constructed supertable for this join of the Player and Manufacturer

table, you would initially see all of the columns in both tables, as shown in truncated form in

Figure 3-20.

Figure 3-20. A “supertable” from the join of the Player and Manufacturer tables

As you can see, you have the PlayerID, PlayerName, PlayerManufacturerID, PlayerCost,

and PlayerStorage columns from the Player table, and the ManufacturerID, ManufacturerName,

and ManufacturerCountry columns from the Manufacturer table. The supertable contains two

more columns that aren’t visible in Figure 3-20: ManufacturerEmail and ManufacturerWeb-

site. In addition, both the PlayerManufacturerID and ManufacturerID columns have the same

value, as these are the columns that you specified in the INNER JOIN statement.

The query specifies that only the Player.PlayerName and Manufacturer.ManufacturerName

columns should be returned, and the remaining columns are ignored, as shown in Figure 3-21.

C H A P T E R 3 ■ D I S P L A Y I N G D A T A O N A P A G E 99

Figure 3-21. Returning a subset of the columns from the supertable

When you looked at sorting columns in the previous example, you learned that you

can sort a set of results by more than one column. The same is also true if you have multiple

tables, and you can sort across any of the columns that are in the supertable. So to sort by

ManufacturerName and then by PlayerName, you would add both of these to the ORDER BY

clause in the order you wanted the sorting to take place, like so:

SELECT Player.PlayerName, Manufacturer.ManufacturerName

FROM Player INNER JOIN Manufacturer

 ON Player.PlayerManufacturerID = Manufacturer.ManufacturerID

ORDER BY Manufacturer.ManufacturerName, Player.PlayerName

So, rather than having a list of Players sorted by name, you would now have a list of

Players sorted by the name of the Manufacturer and then the name of the Player, as shown

in Figure 3-22.

Figure 3-22. You can also sort using columns from different tables.

■Note It’s possible to have multiple joins in the same SQL query and also to mix different join types within

the same SQL query. Joins can quickly become hideously complex. You can find more information about joins

and SQL in general in The Programmer’s Guide to SQL by Christian Darie and Karli Watson (1-59059-218-2;

Apress, 2003).

Try It Out: Filtering the Results

In the previous three examples, you’ve come from writing a simple query that takes data from

one table to being able to order the results you get and join two tables to retrieve user-friendly

data. Now, let’s look at how to filter the results of your queries to return only the results that

meet the criteria you specify.

100 C H A P T E R 3 ■ D I S P L A Y I N G D A T A O N A P AG E

You filter the results of a query by using a WHERE clause to constrain the records that are

returned. In this next example, you’ll again build on the previous example and allow users to

select the Manufacturer in which they’re interested. Once a selection has been made, only the

Players for that Manufacturer will be returned. Follow these steps:

1. If you’ve closed Select.aspx from the previous example, reopen it.

2. In the Design view, add a second SqlDataSource to the page. Then add a DropDownList

from the Standard section of the Toolbox to the page above the GridView. Your page

should look something like Figure 3-23.

Figure 3-23. Adding the second SqlDataSource and a DropDownList

3. Click SqlDataSource2, the second SqlDataSource, and select Configure Data Source

from its Tasks menu.

4. On the Choose Your Data Connection step, select SqlConnectionString from the drop-

down list, and then click Next.

5. On the Configure the Select Statement step, select Manufacturer from the Name drop-

down list, and then select the ManufacturerID and ManufacturerName columns.

6. Click the ORDER BY button. In the Add ORDER BY Clause dialog box, select

ManufacturerName in the first Sort By drop-down list and leave the sort order as

Ascending. Then click OK. Click Next to continue with the wizard.

7. Test that the Manufacturers are being returned correctly by clicking the Test Query

button on the Test Query step. Once you’re satisfied that the query works as expected,

click Finish to close the wizard.

C H A P T E R 3 ■ D I S P L A Y I N G D A T A O N A P A G E 101

8. Select the drop-down list, DropDownList1, and open the Tasks menu. Check the Enable

AutoPostBack check box. Select the Choose Data Source option.

9. On the Choose a Data Source step, select SqlDataSource2 as the data source and

ManufacturerName as the data field to display, as shown in Figure 3-24. Click OK to

close the wizard.

Figure 3-24. The DropDownList Data Source Configuration Wizard

10. Select SqlDataSource1 and click the ellipsis in the SelectQuery property to launch the

Command and Parameter Editor dialog box.

11. Click the Add Parameter button and give the parameter a name of ManufacturerID.

Then select Control as the Parameter source and DropDownList1 as the ControlID.

12. Click the Query Builder button, and then expand the Query Builder dialog box to a

usable size.

13. In the top of the Query Builder dialog box, click the check box next to the ManufacturerID

column in the Manufacturer table. In the list of columns in the query, uncheck the

Output column next to ManufacturerID.

102 C H A P T E R 3 ■ D I S P L A Y I N G D A T A O N A P AG E

14. In the Filter column, enter @ManufacturerID. Make sure that the filtered column is set

correctly. In the table view at the top, you should see that the ManufacturerID column is

highlighted with an icon to show that it is filtered. The SQL query also should have

changed to show that the ManufacturerID column is being filtered using @ManufacturerID,

as shown in Figure 3-25.

Figure 3-25. Modifying the SELECT query to add filtering

15. Click OK to close the Query Builder dialog box, and then click OK again to close the

Command and Parameter Editor dialog box.

16. Open the page. You’ll see that the drop-down list is populated with the available

Manufacturers in the database and the grid shows only the Players manufactured by

Apple, as shown in Figure 3-26.

17. Select any of the other Manufacturers from the drop-down list to see that the list of

Players is indeed modified to display only the correct list of manufactured Players.

C H A P T E R 3 ■ D I S P L A Y I N G D A T A O N A P A G E 103

Figure 3-26. Players can be filtered by Manufacturer

How It Works

Although you’ve looked at several examples so far in the book, this is the first page you’ve seen

that starts to give you an idea of what’s possible with data-driven pages—you’ve responded to

a user selection to modify the results that are returned as part of the query.

We’ll look at this example in two parts: how to populate the drop-down list with the list of

Manufacturers in the database, and then the changes necessary to make the GridView’s data

source handle the filtering.

Populating the DropDownList Web Control

You used a new SqlDataSource, SqlDataSource2, which returns all of the Manufacturers in the

database in alphabetical order by executing a simple SELECT query:

SELECT ManufacturerID, ManufacturerName

FROM Manufacturer

ORDER BY ManufacturerName

Using the Configure Data Source wizard, you specified SqlDataSource2 as the data source

for the drop-down list, as well as the text to display and the value to use from the data source.

Looking at the markup generated from this wizard, you can start to see what is actually happening:

104 C H A P T E R 3 ■ D I S P L A Y I N G D A T A O N A P AG E

<asp:DropDownList ID="DropDownList1" runat="server"

 DataSourceID="SqlDataSource2"

 DataTextField="ManufacturerName"

 DataValueField="ManufacturerID"

 AutoPostBack="True">

</asp:DropDownList>

As you can see, the DataSourceID property is set to the name of the data source that you

want to use.

The DataTextField and DataValueField properties are used to control what is shown

on the page to the user and what is used as the value of the user’s selection. So, by setting

ManufacturerName as the DataTextField property value, you’re telling ASP.NET to show the

Manufacturer names—Apple, Cowon, Creative, and so on. By setting the DataValueField property

to ManufacturerID, you’re saying that you want the ID of the Manufacturer—1, 2, 3, and so on—

to be returned when you request the SelectedValue of the drop-down list.

The AutoPostBack property is set to True to cause any selection changes in the drop-down

list to automatically cause a postback to the server to update the grid that is displayed. If you

left AutoPostBack set to the default value of False, you would need to add a button (or some

other Web control) to the page to force the postback. By having an automatic postback, the

page will react immediately to the user’s selection.

So you have a drop-down list that contains the different values that you want to filter.

Now, let’s look at how the results are filtered for the GridView.

Filtering the GridView’s Data Source

The GridView simply displays the data that it’s told to display from the data source that it’s

bound to; in this case, SqlDataSource1. To filter the results, you change what the data source is

returning from the database by modifying the SELECT query to take into account the value that

you’ve selected in DropDownList1.

First, let’s look at the SELECT query that you now use to interrogate the database. This is the

same query as you used in the previous example, but with the addition of the WHERE clause

(shown in bold):

SELECT Player.PlayerName, Manufacturer.ManufacturerName

FROM Player INNER JOIN Manufacturer

 ON Player.PlayerManufacturerID = Manufacturer.ManufacturerID

WHERE (Manufacturer.ManufacturerID = @ManufacturerID)

ORDER BY Player.PlayerName

The query still returns the Player and Manufacturer names ordered alphabetically on the

Player’s name. Here, you use the WHERE clause to constrain the results that are returned. We’ll

look at the WHERE clause in a lot more detail in the next section, but the simple one that you used

here should be quite easy to understand.

The WHERE clause compares the ManufacturerID column in the Manufacturer table to a

parameter called @ManufacturerID. If the ManufacturerID matches the value of @ManufacturerID, the

row will be returned. So, if you select Apple as the Manufacturer, which has a value of 1, only

the Players that have a ManufacturerID of 1 will be returned.

C H A P T E R 3 ■ D I S P L A Y I N G D A T A O N A P A G E 105

But what’s @ManufacturerID? It’s a parameter to the query, as indicated by @ at the front of

its name. Parameters in SQL are the means whereby you can pass information into a query at

runtime without making any changes to the query. You could have written (quite a lot of) code

to extract the value of the Manufacturer that you want to filter for and changed the query that

you’re running at runtime, but using parameters allows a lot of the hard work to be done for you.

You can use the same query every time and simply vary the value of the parameter that you

pass into the query.

■Note Only when using the SqlClient data provider to connect to SQL Server 2005 can you use named

parameters. Neither the Odbc data provider when connecting to MySQL 5.0 nor the OleDb data provider

when connecting to any database (such as Microsoft Access) support named parameters.Therefore, the

queries for those databases are written a little differently. See the “Connecting to MySQL 5.0 and Microsoft

Access” section later in this chapter for more information.

The @ManufacturerID parameter is defined for SqlDataSource1 using the following markup:

<SelectParameters>

 <asp:ControlParameter ControlID="DropDownList1"

 Name="ManufacturerID" PropertyName="SelectedValue" />

</SelectParameters>

The <SelectParameters> element indicates that all the parameters that you’re adding here

are to be applied to the SelectCommand of the data source. You add one parameter here, a

ControlParameter, which takes its value from another Web control on the page. Table 3-2 lists

the various parameters you can use. We’ll come back to these in more detail in later chapters,

where you’ll see a lot more examples of using parameters, but for now we’ll concentrate on the

ControlParameter, the one you’re using here.

Table 3-2. Query Parameter Types

Name Description

ControlParameter Takes its value from another Web control on the same page.
The Web control to use is specified by ControlID, and the property
on the Web control to retrieve the value from is indicated
by PropertyName.

CookieParameter Uses a value specified in a cookie, indicated by the CookieName
attribute, to set the value of the parameter.

FormParameter Uses a value specified in a form variable, indicated by the FormName
attribute, to set the value of the parameter.

QueryStringParameter Uses a value in the page’s query string, indicated by the
QueryStringField attribute, to set the value of the parameter.

SessionParameter Uses a value in the user’s session, indicated by the SessionField
attribute, to set the value of the parameter.

106 C H A P T E R 3 ■ D I S P L A Y I N G D A T A O N A P AG E

All parameters, irrespective of their type, must specify a Name property, which is the name

used to refer to the parameter within the query. You set a name of ManufacturerID here, and

this will be passed to the query as @ManufacturerID. The leading @ is added automatically by the

SqlClient data provider; if you were to add it to the name in the parameter definition, the

result would be @@ManufacturerID, which isn’t what you want.

■Note Several other properties are common across all the parameter types. In most instances, you won’t

need to use them. However, one that can be quite important is the DefaultValue parameter, which sets the

value that is used if the parameter that you’ve defined cannot be evaluated. Examples of all of these properties

are available in the MSDN documentation.

For the rest of the parameter definition, you use the ControlID and PropertyName attributes

to specify the Web control to interrogate and the property you want from the Web control.

You’re filtering the Players based on a Manufacturer selected in the drop-down list, and so you

use the name of the Web control, DropDownList1, as the ControlID. You set the PropertyName to

SelectedValue, to specify from which of the Web control’s properties you want to retrieve the

parameter’s actual value.

Try It Out: Filtering Results and Showing All Results

In the previous example, you saw how the results could be filtered, but there was no way to

show the Players for all of the Manufacturers at the same time. It is possible to show both

filtered and nonfiltered results using the same Web controls, as you’ll see in this example.

Follow these steps:

1. If you’ve closed Select.aspx from the previous example, reopen it.

2. Switch to Design view. Select the drop-down list, DropDownList1.

3. In the Properties window, switch to the Events view (by clicking the lightning bolt icon).

Under the Data section, double-click in the DataBound event to create the

DropDownList1_DataBound event handler. Enter the following code within the event:

DropDownList1.Items.Insert(0,

new ListItem("-- All Manufacturers --", "0"));

4. Switch back to Design view and select the SqlDataSource1. Click the ellipsis in the

SelectQuery property to launch the Command and Parameter Editor dialog box.

5. Click the Query Builder button and expand the Query Builder dialog box to a usable size.

6. In the list of columns in the middle of the screen, add a new column called

@ManufacturerID, uncheck the Output column, and in the first Or... column, enter a

value of 0. You should have the column list and SQL query shown in Figure 3-27.

C H A P T E R 3 ■ D I S P L A Y I N G D A T A O N A P A G E 107

Figure 3-27. Adding a second column to the WHERE clause

7. Close OK to close the Query Builder, and then click OK again to close the Command and

Parameter Editor dialog box.

8. Open the page. You’ll see that the drop-down list has a new first entry of -- All

Manufacturers --, and the grid itself is populated with the Players for all the

Manufacturers, as shown in Figure 3-28.

Figure 3-28. The Players for all Manufacturers can now be viewed.

9. Select any of the Manufacturers from the drop-down list, and you’ll see that the list of

Players is still modified, depending on your selection.

108 C H A P T E R 3 ■ D I S P L A Y I N G D A T A O N A P AG E

How It Works

With a little more work (and our first line of code!), you’ve modified the page so that you can

view all of the Players in the database or a list filtered by Manufacturer.

First, you changed the query to return the Players from the database by adding an OR to the

WHERE clause:

SELECT Player.PlayerName, Manufacturer.ManufacturerName

FROM Player INNER JOIN Manufacturer

 ON Player.PlayerManufacturerID = Manufacturer.ManufacturerID

WHERE (Manufacturer.ManufacturerID = @ManufacturerID)

 OR (@ManufacturerID = 0)

ORDER BY Player.PlayerName

There are now two parts to the clause, and these are OR’d together; if either of the parts is

true, then the row that you’re dealing with will be returned.

The first part of the OR statement works as it did in the previous example: it filters the

results based on the value of the @ManufacturerID parameter. The second part of the OR state-

ment will return true if the value of the @ManufacturerID parameter is equal to 0. This isn’t

a valid Manufacturer in the database, and as you’ll soon see, it’s the value used to indicate

-- All Manufacturers --.

Because this is an OR statement, the parts of the WHERE clause work together to filter the

Players. If you have a @ManufacturerID that isn’t 0, the Players will be filtered for that Manufacturer.

If you have a @ManufacturerID of 0, all of the Players will be returned.

By populating the drop-down list with the Manufacturers from the database, it will be

possible to filter the results based on the Manufacturer, but it removes the ability to not filter

the results. The SELECT query on the database returns the list of Manufacturers, but it doesn’t

return a “no manufacturer” entry. In order to allow the user to select to view all of the Players

in the database, you need to add an -- All Manufacturers -- entry to the drop-down list.

The DataBound event fires for the drop-down list after any data binding has occurred, and

the OnDataBound property of the GridView is used to point to the event handler that you want to

execute. In this case, DropDownList1_DataBound is called after the query to populate the list of

Manufacturers has completed, and at this point, you can add the -- All Manufacturers -- entry:

DropDownList1.Items.Insert(0,

 new ListItem("-- All Manufacturers --", "0"));

You’re inserting a new ListItem at position 0 to the Items collection of the drop-down list,

ensuring that it’s the first item in the list and that when the page first loads, all of the Players in

the database (the nonfiltered results) are displayed.

In this example, you’ve seen that you can use the WHERE clause to restrict the records that

you’ve returned based on the criteria you specify. Now, let’s take a closer look at what else you

can do with the WHERE clause.

Introducing the WHERE Clause
Not only is the WHERE clause used with the SELECT query, it can also be used with the UPDATE and

DELETE queries to restrict your actions within the database. You’ll look at UPDATE and DELETE

queries starting in Chapter 8, but for now, you’ll concentrate on what you can do with the WHERE

C H A P T E R 3 ■ D I S P L A Y I N G D A T A O N A P A G E 109

clause. In the previous filtering examples, you’ve looked at comparing only two values to see if

they’re equal. Now, let’s look at the other operators that are available.

Using Comparison Operators

Table 3-3 describes the standard comparison operators. You should be familiar with most of

the comparison operators; they work in the way that you would expect.

The only comparison operator that you may not be unfamiliar with is the IS NULL operator.

Null values in the database can’t be compared to any other value and won’t appear in any

comparison. So, if you execute the following query, you would expect to return every Player

that had a PlayerManufacturerID of any value other than 1:

SELECT PlayerName

FROM Player

WHERE PlayerManufacturerID <> 1

However, this isn’t the case, and if null values are allowed for PlayerManufacturerID,

you would need to test for this condition explicitly, like so:

SELECT PlayerName

FROM Player

WHERE PlayerManufacturerID <> 1 OR PlayerManufacturerID IS NULL

This will return the correct results: Players that have a PlayerManufacturerID that isn’t

equal to 1 and Players that have a null value for PlayerManufacturerID.

Using Logical Operators

You’ve already seen the OR logical operator in action when you filtered the results in the

previous example, and I sneaked it in again at the end of the discussion of comparison

operators. Table 3-4 lists all of the SQL logical operators.

Table 3-3. The SQL Comparison Operators

Operator Definition Example

= Equality PlayerManufacturerID = 1

<> Inequality PlayerManufacturerID <> 1

< Less than PlayerManufacturerID < 3

> Greater than PlayerManufacturerID > 4

<= Less than or equal to PlayerManufacturerID <= 3

>= Greater than or equal to PlayerManufacturerID >= 4

IS NULL Test for null values PlayerManufacturerID IS NULL

110 C H A P T E R 3 ■ D I S P L A Y I N G D A T A O N A P AG E

Using the IN and BETWEEN Operators

SQL also defines two other handy operators that you can use within the WHERE clause to make

some of the clauses that you need to execute a little simpler.

The IN operator allows you to specify that you’re looking within a series of noncontiguous

values and is equivalent to using the OR operator to chain together several different equality

comparisons. For example, to return all the Players that have a PlayerManufacturerID of 1, 3,

or 5, you could execute the following query:

SELECT PlayerName, PlayerManufacturerID

FROM Player

WHERE PlayerManufacturerID = 1

 OR PlayerManufacturerID = 3

 OR PlayerManufacturerID = 5

The IN operator allows you to do this more simply:

SELECT PlayerName, PlayerManufacturerID

FROM Player

WHERE PlayerManufacturerID IN (1,3,5)

Both queries will return the same results, as shown in Figure 3-29.

Figure 3-29. Selecting from a series of values using the IN operator

Similarly, you can use the BETWEEN operator to specify that you’re looking within a contiguous

range of values. If you wanted to return all the Players that have a PlayerManufacturerID of 3, 4,

or 5, you could use the AND, <=, and >= operators in conjunction to retrieve the correct Players:

SELECT PlayerName, PlayerManufacturerID

FROM Player

WHERE PlayerManufacturerID >= 3 AND PlayerManufacturerID <= 5

Table 3-4. The SQL Logical Operators

Operator Definition Usage

AND Returns true if both conditions are true a AND b

OR Returns true if either condition is true a OR b

NOT Returns true if the condition is false NOT a

C H A P T E R 3 ■ D I S P L A Y I N G D A T A O N A P A G E 111

The BETWEEN operator allows you to simplify this, like so:

SELECT PlayerName, PlayerManufacturerID

FROM Player

WHERE PlayerManufacturerID BETWEEN 3 AND 5

Both of these queries will return the results shown in Figure 3-30.

Figure 3-30. Selecting from a range of values using the BETWEEN operator

One word of warning when using the BETWEEN operator: You’ll notice that you use AND to

specify the upper and lower values of the range. This isn’t the same as using the AND operator as

a logical comparison, so don’t get the two confused.

Connecting to MySQL 5.0 and Microsoft Access
Now that we’ve looked at the SQL Server 2005 pages, it’s time to see what the differences are

when you use MySQL 5.0 and Microsoft Access pages. As I’ve noted earlier, when you use the

SqlDataSource, you’re shielded quite a lot from the intricacies of data access, so the pages to

connect to the three databases are the same apart from one area: parameters to queries.

■Note In the code download for this chapter, and indeed for every chapter (available from the Downloads

section of the Apress Web site at http://www.apress.com), you’ll find two folders: odbc and oledb. The

odbc folder contains a copy of the SQL Server 2005-based pages modified to connect to MySQL 5.0, and the

oledb folder contains modified pages to connect to Microsoft Access.

Let’s first look at the connection strings for the database types, and then review how

MySQL and Access handle query parameters.

Connection Strings

So, what sort of things does a connection string contain? This depends on the data provider

you’re using, and in the case of OleDb and Odbc data providers, also on the underlying

provider/driver you’re using.

112 C H A P T E R 3 ■ D I S P L A Y I N G D A T A O N A P AG E

As you’ve already seen, the connection strings should be stored in the <connectionStrings>

section of Web.config. In the code download for all of the chapters, you’ll see that there are

three different connection strings defined in Web.config:

<connectionStrings>

 <add name="SqlConnectionString"

 connectionString="Data Source=localhost\band;Initial Catalog=Players;

 Persist Security Info=True;User ID=band;Password=letmein"

 providerName="System.Data.SqlClient"/>

 <add name="OdbcConnectionString"

 connectionString="Driver={MySQL ODBC 3.51 Driver};

 server=localhost;database=players;uid=band;pwd=letmein;"

 providerName="System.Data.Odbc" />

 <add name="OleDbConnectionString"

 connectionString="Provider=Microsoft.Jet.OLEDB.4.0;

 Data Source=C:\band\players.mdb"

 providerName="System.Data.OleDb" />

</connectionStrings>

We’ve already looked at SqlConnectionString earlier in this chapter.

For the OdbcConnectionString, the first thing you specify is the ODBC Driver being used.

Each driver has its own connection string specification, and if you don’t specify the driver, the

rest of the connection string cannot be parsed correctly.

For MySQL 5.0, the connection string must specify the server, database, uid, and pwd that

are to be used to connect to the database.

The OleDbConnectionString specifies the OLE DB Provider being used, and then the connec-

tion string details specific to the provider. When using the JET provider to connect to Microsoft

Access, you specify the Data Source as the filename, including the path, to the .mdb file.

■Note You have a multitude of options for connecting to data sources. For a comprehensive list, see

http://www.connectionstrings.com.

Parameters and Queries

The only difference when using MySQL 5.0 or Access for the examples in this chapter involves

the parameters for queries.

With named parameters, the SqlClient data provider can determine which parameter is

required. In the examples, you used a named parameter called @ManufacturerID, and even

though the parameter was used twice in the query, only one parameter was defined.

The Odbc data provider when connecting to MySQL and the OleDb data provider when

connecting to any database rely on the order that the parameters are added to the SqlDataSource to

determine how they’re inserted into the query. This means that they require a slightly different

query than the SqlClient data provider. Rather than the @ syntax to refer to a parameter, you

use a question mark (?) instead, like so:

C H A P T E R 3 ■ D I S P L A Y I N G D A T A O N A P A G E 113

SELECT Player.PlayerName, Manufacturer.ManufacturerName

FROM Player INNER JOIN Manufacturer

 ON Player.PlayerManufacturerID = Manufacturer.ManufacturerID

WHERE Player.PlayerManufacturerID = ?

 OR ? = 0

As there are two parameters (indicated by the two question marks), you must specify two

parameters, even if, as in this case, the two parameters take the same value. As these aren’t

named parameters, you don’t need to specify a name (if you do, it will simply be ignored):

<SelectParameters>

 <asp:ControlParameter ControlID="DropDownList1"

 PropertyName="SelectedValue" />

 <asp:ControlParameter ControlID="DropDownList1"

 PropertyName="SelectedValue" />

</SelectParameters>

If you look at the two modified Select.aspx files in the odbc and oledb folders, you’ll see

that apart from these two changes—the change to the query and the addition of the duplicate

parameter—the pages are the same.

Summary
This chapter covered quite a lot of ground. You’ve learned about the following:

• You were introduced to the GridView and SqlDataSource, and through the course of the

examples, saw how easy it is to build data-driven pages with a minimum of code.

• You were introduced to the SELECT query by writing a simple query for one table.

• You expanded your understanding of the SELECT query by looking at ordering results and

joining tables to retrieve information from both tables in the same query.

• You looked at filtering the results that you returned by using parameters with values

taken from other Web controls on the page.

• You looked at the comparison and logical operators you can use with the WHERE clause

and saw the IN and BETWEEN operators you can use to simplify the constraints that you

add to queries.

• You looked at the connection strings that are required for the SQL Server 2005, MySQL 5.0,

and Microsoft Access databases, and saw how to store all three connection strings in the

<connectionStrings> element of Web.config.

• You saw that SQL Server 2005 supports the concept of named parameters where the

same parameter can be used several times in the same query. With MySQL 5.0 and

Microsoft Access, you need to provide a separate value for each parameter within the

query, even if you want to reuse the same parameter.

Now that you’ve had a taste of how data-driven pages work, we’ll move on to look at how

you can connect to the database using code, rather than relying on the SqlDataSource to do all

of the work for you.

